<table>
<thead>
<tr>
<th>Wall type</th>
<th>Gable</th>
<th>Lintel</th>
<th>Slab on ground</th>
<th>Beam and block</th>
<th>Suspended Timber</th>
<th>Plaster stop bead</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV01</td>
<td>MV01 Gable Use this detail instead of ACD: MCI-RG-01</td>
<td>MV01 Lintel (A) Use this detail instead of ACD: MII-WD-01</td>
<td>MV01-F02 Use this detail instead of ACD: MCI-GF-01</td>
<td>MV01-F01 (A) Use this detail instead of ACD: MCI-GF-01</td>
<td>MV01-F03 (A) Use this detail instead of ACD: MCI-GF-01</td>
<td>Plasterstop Bead Detail – PB Pla1 This detail to be used in conjunction with MV01 wall types</td>
</tr>
<tr>
<td></td>
<td>MV01 Lintel (B) Use this detail instead of ACD: MCI-WD-01</td>
<td>MV01 Lintel (A) Use this detail instead of ACD: MCI-WD-01</td>
<td>MV01-F02 Use this detail instead of ACD: MCI-GF-01</td>
<td>MV01-F01 (A) Use this detail instead of ACD: MCI-GF-01</td>
<td>MV01-F03 (A) Use this detail instead of ACD: MCI-GF-01</td>
<td>Plasterstop Bead Detail – PB Pla2 This detail to be used in conjunction with MV01 wall types</td>
</tr>
<tr>
<td></td>
<td>MV02 Gable Use this detail instead of ACD: MII-RG-01</td>
<td>MV02 Lintel (B) Use this detail instead of ACD: MII-WD-01</td>
<td>MV02-F02 Use this detail instead of ACD: MCI-GF-01</td>
<td>MV02-F01 (A) Use this detail instead of ACD: MII-GF-01</td>
<td>MV02-F03 (A) Use this detail instead of ACD: MII-GF-03</td>
<td>Plasterstop Bead Detail Par1 This detail to be used in conjunction with MV02 & 03 wall types</td>
</tr>
<tr>
<td></td>
<td>MV03 Gable Use this detail instead of ACD: MII-RG-01</td>
<td>MV03 Lintel (A) Use this detail instead of ACD: MII-WD-01</td>
<td>MV03-F02 Use this detail instead of ACD: MCI-GF-01</td>
<td>MV03-F01 (B) Use this detail instead of ACD: MII-GF-01</td>
<td>MV03-F03 (B) Use this detail instead of ACD: MII-GF-03</td>
<td>Plasterstop Bead Detail Par2 This detail to be used in conjunction with MV02 & 03 wall types</td>
</tr>
<tr>
<td></td>
<td>MV03 Lintel (B) Use this detail instead of ACD: MII-WD-01</td>
<td>MV03 Lintel (A) Use this detail instead of ACD: MII-WD-01</td>
<td>MV03-F02 Use this detail instead of ACD: MCI-GF-01</td>
<td>MV03-F01 (B) Use this detail instead of ACD: MII-GF-01</td>
<td>MV03-F03 (B) Use this detail instead of ACD: MII-GF-03</td>
<td>Plasterstop Bead Detail Par1 This detail to be used in conjunction with MV02 & 03 wall types</td>
</tr>
</tbody>
</table>

N.B. Words in bold are the detail title.

September 2008
Enhanced Construction Details identification matrix

<table>
<thead>
<tr>
<th>Wall type</th>
<th>Gable</th>
<th>Lintel</th>
<th>Slab on ground</th>
<th>Beam and block</th>
<th>Suspended Timber</th>
<th>Plaster stop bead</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF01</td>
<td>SF01 Gable Use this detail instead of ACD: SFW-RG-01</td>
<td>SF01 Lintel (A) Use this detail instead of ACD: SFW-WD-01</td>
<td>SF01-F01 (A) Use this detail instead of ACD: SFW-GF-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SF01 Lintel (B) Use this detail instead of ACD: SFW-WD-01</td>
<td>SF01 Lintel (B) Use this detail instead of ACD: SFW-WD-01</td>
<td>SF01-F01 (A) Use this detail instead of ACD: SFW-GF-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF01</td>
<td>TF01 Gable Use this detail instead of ACD: TFW-RG-01</td>
<td>TF01 Lintel Use this detail instead of ACD: TFW-WD-01</td>
<td>TF01-F01 (A) Use this detail instead of ACD: TFW-GF-01</td>
<td>TF01-F03 (A) Use this detail instead of ACD: TFW-GF-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TF01 Lintel Use this detail instead of ACD: TFW-WD-01</td>
<td>TF01 Lintel Use this detail instead of ACD: TFW-WD-01</td>
<td>TF01-F03 (A) Use this detail instead of ACD: TFW-GF-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF02</td>
<td>TF02 Gable Use this detail instead of ACD: TFW-RG-01</td>
<td>TF02 Lintel (A) Use this detail instead of ACD: TFW-WD-01</td>
<td>TF02-F01 (A) Use this detail instead of ACD: TFW-GF-01</td>
<td>TF02-F03 (A) Use this detail instead of ACD: TFW-GF-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TF02 Lintel (B) Use this detail instead of ACD: TFW-WD-01</td>
<td>TF02 Lintel (B) Use this detail instead of ACD: TFW-WD-01</td>
<td>TF02-F03 (A) Use this detail instead of ACD: TFW-GF-03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N.B. Words in bold are the detail title.

September 2008
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

1 Thermal conductivity of blockwork adjacent to ceiling insulation must provide a minimum thermal resistance of 1.74 m²K/W over the distance shown by the arrow.
2 Minimum thermal resistance of this insulation layer to achieve 1.30 m²K/W.

ψ = 0.057 W/mK

Use this detail instead of ACD: MCI-RG-01

Enhanced Detail MV01 Gable

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Minimum lap of window/door frame with insulation of 70 mm, or provide a minimum thermal resistance of this lap of 1.75 m²K/W.

Use this detail instead of ACD: MCI-WD-01

Enhanced Detail MV01 Lintel (A)
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Enhanced Detail MV01 Lintel (B)
Use this detail instead of ACD: MCI-WD-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Enhanced Detail MV01-F01 (A)
Use this detail instead of ACD: MCI-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Enhanced Detail MV01-F01 (B)
Use this detail instead of ACD: MCI-GF-01

Suggested construction sequence including site check list

1. Grout/cement wash surface of block and beam floor to seal joints.
2. Damp proof membrane tail lapped out 450 mm from inner leaf damp proof course as masonry built, lapped over floor. N.B. Damp proof membrane lap must not be above the level of the proposed floor finish.
3. Lay floor damp proof membrane/air barrier over floor and lap up walls by 450 mm and temporarily fix to wall. Any services penetrations through air barrier to be suitably sealed.
4. Fit perimeter upstand insulation with a minimum thermal resistance of 1.52 m²K/W hard up against wall up to height of screeded finish.
5. Lay floor insulation hard up against perimeter insulation.
7. Ensure checklist on Plasterstop Bead Detail PB Pla2 has been completed.
8. Fix services to wall.
9. Plaster blockwork to provide air barrier to wall.

ψ = 0.067 W/mK

ψ: Thermal Performance

ψ: Air Barrier

1. Minimum thermal resistance of the perimeter insulation upstand to achieve 1.52 m²K/W.
2. Overlap of insulation to be 300 mm minimum.
3. Blockwork of maximum 0.19 W/mK dry thermal conductivity.

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Damp proof membrane tail lapped out 600 mm from inner leaf damp proof course as masonry built, lapped over floor preparation.
 - N.B. Damp proof membrane lap must not be above the level of the proposed floor finish.
2. Lay floor damp proof membrane/air barrier over floor preparation and lap up walls by 450 mm and temporarily fix to wall. Any services penetrations through air barrier to be suitably sealed.
3. Fit perimeter upstand insulation with a minimum thermal resistance of 1.52 m²K/W hard up against wall up to height of floor finish.
4. Lay floor insulation hard up against perimeter insulation.
 - Concrete floor.
5. Ensure checklist on Plasterstop Bead Detail P8 Pla2 has been completed.
6. Fix services to wall.
7. Plaster blockwork to provide air barrier to wall.

Ψ = 0.075 W/mK

- Thermal Performance
- Air Barrier

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Enhanced Detail MV01-F02

Use this detail instead of ACD: MCI-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Provide insulation between floor joists in location of proposed internal stud walls.
2. Fix lower floor sheeting/decking.
3. Lap out 450 mm tail of air barrier over lower floor sheeting and lap up walls by 150 mm.
4. Ensure checklist on Plasterstop Bead Detail PB Pla2 has been completed.
5. Fix services to wall.
6. Plaster blockwork to provide air barrier to wall.
7. Lay air barrier over lower floor sheeting and lap/tape to air barrier tail. Any services penetrations through air barrier to be suitably sealed.
8. Erect internal walls.
9. Lay floor insulation hard up against wall.
10. Lay upper floor decking.

- **Thermal Performance**: $\Psi = 0.048 \text{ W/mK}$
- **Air Barrier**

1. Overlap of insulation to be 300 mm minimum.
2. Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Enhanced Detail MV01-F03 (A)

Use this detail instead of ACD: MCI-GF-03
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Provide insulation between floor joists in location of proposed internal stud walls.
2. Fix lower floor sheeting/decking.
3. Lap out 450 mm tail of air barrier over lower floor sheeting and lap up walls by 150 mm.
4. Ensure checklist on Plasterstop Bead Detail PB Pla2 has been completed.
5. Fix services to wall.
6. Plaster blockwork to provide air barrier to wall.
7. Lay air barrier over lower floor sheeting and lap/tape to air barrier tail. Any services penetrations through air barrier to be suitably sealed.
8. Erect internal walls.
9. Lay floor insulation hard up against wall.
10. Lay upper floor decking.

Overlap of insulation to be 300 mm minimum.
Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Psi = 0.048 W/mK

1: Thermal Performance
2: Air Barrier

Enhanced Detail MV01-F03 (B)
Use this detail instead of ACD: MCI-GF-03

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

- Ensure insulation below ceiling is installed tight up against edge of wall/air barrier.
- Fix plaster stop bead to wall tight up against ceiling insulation.
- Trim off any additional air barrier below plasterstop bead.

Alternate check list for foil backed insulation.

- Ensure insulation below ceiling is installed tight up against edge of wall.
- Tape a 150 mm width of air barrier membrane to ceiling insulation to lap down wall.
- Fix plaster stop bead to wall tight up against ceiling insulation.
- Trim off any additional air barrier below plasterstop bead.

- Thermal Performance
- Air Barrier

Vapour control layer/air barrier to be lapped to plaster stop bead.

Plasterstop Bead Detail – PB Pla1

This detail to be used in conjunction with MV01 wall types.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Site check list – floor type F03 (as shown)

- Fix plasterstop bead to wall ensuring it is hard down onto air barrier lapped over lower floor sheeting.
- Trim off any additional air barrier above plasterstop bead.

Alternate site check list – floor types F01 and 02

- Fix plasterstop bead to wall ensuring it is hard down onto floor perimeter insulation.
- Trim off any additional air barrier above plasterstop bead.

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Plasterstop Bead Detail – PB Pla2

This detail to be used in conjunction with MV01 wall types
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

- **1** Pack compressible insulation between last truss/joist and gable wall.
- **2** Fix ceiling air barrier/vapour control layer to underside of trusses/joists with a lap of 300 mm down wall.
- **3** Fix insulation with minimum thermal resistance of 1.30 m²K/W to underside of ceiling, with edge tight to air barrier/vapour control layer lapped down wall.*
- **4** Ensure checklist on Plasterstop Bead Detail P8 Par1 has been completed.
- **5** Fix 50 mm wide (depth dependent on services to be provided) battens at maximum 600 mm centres to underside of ceiling, perpendicular to trusses.
- **6** Erect internal walls with header plate secured to underside of ceiling battens.
- **7** Parge blockwork to provide air barrier to wall.
- **8** First fix services to wall and underside of ceiling.
- **9** Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.
- **10** Pack compressible insulation between ceiling battens to the top of the insulated plasterboard to wall.
- **11** Place plasterboards to ceiling, and tape joints or provide skim finish.
- **12** Place ceiling insulation between/over trusses/joists and ensure that the full depth of insulation over trusses/joists extends to inner edge of blockwork.
- **13** Provide mastic seal to all service penetrations.

* N.B. This stage can be completed at any point from * above.

ψ = 0.049 W/mK

A: Thermal Performance
B: Air Barrier

Enhanced Detail MV02 Gable
Use this detail instead of ACD: MII-RG-01

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Place rigid/semi rigid insulation into cavity from below up to the underside of the stepped damp proof course/cavity tray. Ensure the insulation will be in contact with window/door frame.
2. Install window/door frame, and provide a mastic seal in gap between frame and lintel/masonry, and place double sided tape over joint.
3. Parget blockwork to provide air barrier to wall.
4. Erect internal walls.
5. First fix services to wall.
6. Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.
7. Fix insulated plasterboard with minimum thermal resistance of 0.65 m²K/W on the underside of lintel hard up to window/door frame.
8. Fit weatherboard to underside of outer leaf hard up to frame and seal joint with mastic. Provide a mastic seal in gap between frame and masonry externally, and plasterboard internally.

ψ = 0.007 W/mK

- **1**: Thermal Performance
- **2**: Air Barrier

Enhanced Detail MV02 Lintel (A)

Use this detail instead of ACD: MII-WD-01

1. Minimum lap of window/door frame with insulation of 70 mm, or provide a minimum thermal resistance of this lap of 1.75 m²K/W.
2. Minimum thermal resistance of this insulation layer to achieve 1.52 m²K/W.
3. Minimum thermal resistance of this insulation layer to achieve 0.65 m²K/W.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Place rigid/semi rigid insulation into cavity from below up to the underside of the stepped damp proof course/cavity tray. Ensure the insulation will be in contact with window/door frame.
2. Install window/door frame, and place double sided tape to edge of frame internally.
3. Parge blockwork to provide air barrier to wall.
4. Place a width of vapour control membrane lapped to frame and lintel/masonry.
5. Erect internal walls.
6. First fix services to wall.
7. Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.
8. Fix insulated plasterboard with minimum thermal resistance of 0.65 m²K/W on the underside of lintel, hard up to window/door frame.
9. Provide a mastic seal in gap between frame and masonry externally, and plasterboard internally.

Psi = 0.007 W/mK

Site Manager/Supervisor: .. **Site Name:** .. **Plot No:** .. **Date:** / /

Enhanced Detail MV02 Lintel (B)

Use this detail instead of ACD: MII-WD-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Grout/cement wash surface of block and beam floor to seal joints.
2. Damp proof membrane tail lapped out 450 mm from inner leaf damp proof course as masonry built, lapped over floor. N.B. Damp proof membrane lap must not be above the level of the proposed floor finish.
3. Lay floor damp proof membrane/air barrier over floor and lap up walls by 450 mm and temporarily fix to wall. Any services penetrations through air barrier to be suitably sealed.
4. Fit perimeter upstand insulation with a minimum thermal resistance of 3.04 m²K/W hard up against wall up to height of screeded finish.
5. Lay floor insulation hard up against perimeter insulation.
7. Ensure checklist on Plasterstop Bead Detail PB Par2 has been completed.
8. Parge blockwork to provide air barrier to wall.
9. First fix services to wall.
10. Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.
11. Inject insulating expanded foam between insulated dry-lining and perimeter upstand insulation.
12. Provide mastic seal to all service penetrations.

ψ = 0.056 W/mK

1: Thermal Performance
2: Air Barrier

- Minimum thermal resistance of the perimeter insulation upstand to achieve 3.04 m²K/W.
- Overlap of insulation to be 300 mm minimum.
- Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Enhanced Detail MV02-F01 (A)

Use this detail instead of ACD: MII-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Enhanced Detail MV02-F01 (B)
Use this detail instead of ACD: MII-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Enhanced Detail MV02-F02
Use this detail instead of ACD: MCI-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

1. Minimum thermal resistance of this insulation layer to achieve 1.52 m²K/W.
2. Overlap of insulation to be 300 mm minimum.
3. Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Enhanced Detail MV02-F03 (A)
Use this detail instead of ACD: MII-GF-03

Ψ = 0.032 W/mK

1: Thermal Performance
2: Air Barrier
Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Minimum thermal resistance of this insulation layer to achieve 1.52 m²K/W.
Overlap of insulation to be 300 mm minimum.
Blockwork of maximum 0.19 W/mK dry thermal conductivity.

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Ensure insulation below ceiling is installed tight up against edge of wall/air barrier.
2. Fix plaster stop bead to wall tight up against ceiling insulation.
3. Trim off any additional air barrier below plaster stop bead.

Alternate check list for foil backed insulation.

1. Ensure insulation below ceiling is installed tight up against edge of wall.
2. Tape a 150 mm width of air barrier membrane to ceiling insulation to lap down wall.
3. Fix plaster stop bead to wall tight up against ceiling insulation.
4. Trim off any additional air barrier below plaster stop bead.

- T: Thermal Performance
- A: Air Barrier

This detail to be used in conjunction with MV02 & 03 wall types.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Site check list – floor type F03 (as shown)

- Fix plasterstop bead to wall ensuring it is hard down onto air barrier lapped over lower floor sheeting.
- Trim off any additional air barrier above plasterstop bead.

Alternate site check list – floor types F01 and 02

- Fix plasterstop bead to wall ensuring it is hard down onto floor perimeter insulation.
- Trim off any additional air barrier above plasterstop bead.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Site Manager/Supervisor: .. Site Name: .. Plot No: .. Date: / /

Plasterstop Bead Detail Par2
This detail to be used in conjunction with MV02 & 03 wall types
Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Place rigid/semi rigid insulation into cavity from below up to the underside of the stepped damp proof course/cavity tray. Ensure the insulation will be in contact with window/door frame.
2. Install window/door frame, and provide a mastic seal in gap between frame and lintel/masonry, and place double sided tape over joint.
3. Parge blockwork to provide air barrier to wall.
4. Erect internal walls.
5. First fix services to wall.
6. Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.
7. Fix insulated plasterboard with minimum thermal resistance of 0.65 m²K/W on the underside of lintel hard up to window/door frame.
8. Fit weatherboard to underside of outer leaf hard up to frame and seal joint with mastic. Provide a mastic seal in gap between frame and masonry externally, and plasterboard internally.

Ψ = 0.004 W/mK

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Fit compressible insulation into cavity from below up to the underside of the stepped damp proof course/cavity tray. Fit proprietary insulated cavity closer and ensure this will be in contact with window/door frame.

2. Install window/door frame, and place double sided tape to edge of frame internally and lap to cavity closer.

3. Parge blockwork to provide air barrier to wall.

4. Erect internal walls.

5. First fix services to wall.

6. Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.

7. Fix insulated plasterboard with minimum thermal resistance of 0.65 m²K/W on the underside of lintel, hard up to window/door frame.

8. Provide a mastic seal in gap between frame and masonry externally, and plasterboard internally.

- **Ψ = 0.004 W/mK**
 - **T**: Thermal Performance
 - **A**: Air Barrier

1. Minimum lap of window/door frame with insulation of 70 mm, or provide a minimum thermal resistance of this lap of 1.75 m²K/W.

2. Minimum thermal resistance of this insulation layer to achieve 1.52 m²K/W.

3. Minimum thermal resistance of this insulation layer to achieve 0.65 m²K/W.

Enhanced Detail MV03 Lintel (B)

Use this detail instead of ACD: MII-WD-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Enhanced Detail MV03-F01 (A)
Use this detail instead of ACD: MII-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

- Grout/cement wash surface of block and beam floor to seal joints.
- Damp proof membrane tail lapped out 450 mm from inner leaf damp proof course as masonry built, lapped over floor. N.B. Damp proof membrane lap must not be above the level of the proposed floor finish.
- Lay floor damp proof membrane/air barrier over floor and lap up walls by 450 mm and temporarily fix to wall. Any services penetrations through air barrier to be suitably sealed.
- Fit perimeter upstand insulation with a minimum thermal resistance of 3.04 m²K/W hard up against wall up to height of screeded finish.
- Lay floor insulation hard up against perimeter insulation.
- Screed floor.
- Ensure checklist on Plasterstop Bead Detail PB Par2 has been completed.
- Parge blockwork to provide air barrier to wall.
- First fix services to wall.
- Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.
- Inject insulating expanded foam between insulated dry-lining and perimeter upstand insulation.
- Provide mastic seal to all service penetrations.

Ψ = 0.039 W/mK

1: Thermal Performance
2: Air Barrier

Minimum thermal resistance of the perimeter insulation upstand to achieve 3.04 m²K/W.
Overlap of insulation to be 300 mm minimum.
Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Enhanced Detail MV03-F01 (B)
Use this detail instead of ACD: MII-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Damp proof membrane tail lapped out 600 mm from inner leaf damp proof course as masonry built, lapped over floor preparation. N.B. Damp proof membrane lap must not be above the level of the proposed floor finish.
2. Lay floor damp proof membrane/air barrier over floor preparation and lap up walls by 450 mm and temporarily fix to wall. Any services penetrations through air barrier to be suitably sealed.
3. Fit perimeter upstand insulation with a minimum thermal resistance of 3.04 m²K/W hard up against wall up to height of floor finish.
4. Lay floor insulation hard up against perimeter insulation.
5. Concrete floor.
6. Ensure checklist on Plasterstop Bead Detail PB Par2 has been completed.
7. Parge blockwork to provide air barrier to wall.
8. Erect internal walls.
9. Fix services to wall.
10. Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.
11. Inject insulating expanded foam between insulated dry-lining and perimeter upstand insulation.
12. Provide mastic seal to all service penetrations.

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

ψ = 0.043 W/mK

- **T**: Thermal Performance
- **A**: Air Barrier

Enhanced Detail MV03-F02

Use this detail instead of ACD: MCI-GF-01

Minimum thermal resistance of the insulation layer to achieve 1.52 m²K/W.
Minimum thermal resistance of the perimeter insulation upstand to achieve 3.04 m²K/W.
Overlap of insulation to be 300 mm minimum.
Blockwork of maximum 0.19 W/mK dry thermal conductivity.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Provide insulation between floor joists in location of proposed internal stud walls.
2. Fix lower floor sheeting/decking.
3. Lap out 450 mm tail of air barrier over lower floor sheeting and lap up walls by 150 mm.
4. Ensure checklist on Plasterstop Bead Detail PB Par2 has been completed.
5. Parge blockwork to provide air barrier to wall.
6. Lay air barrier over lower floor sheeting and lap/tape to air barrier tail. Any services penetrations through air barrier to be suitably sealed.
7. Erect internal walls.
8. Lay floor insulation hard up against wall.
10. First fix services to wall.
11. Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.
12. Inject insulating expanded foam between insulated dry-lining and floor decking.
13. Provide mastic seal to all service penetrations.

Minimum thermal resistance of this insulation layer to achieve 1.52 m²K/W.
Overlap of insulation to be 300 mm minimum.
Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Ψ = 0.029 W/mK

1: Thermal Performance
2: Air Barrier

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Enhanced Detail MV03-F03 (A)
Use this detail instead of ACD: MII-GF-03
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Provide insulation between floor joists in location of proposed internal stud walls.
2. Fix lower floor sheeting/decking.
3. Lap out 450 mm tail of air barrier over lower floor sheeting and lap up walls by 150 mm.
4. Ensure checklist on Plasterstop Bead Detail PB Par2 has been completed.
5. Parge blockwork to provide air barrier to wall.
6. Lay air barrier over lower floor sheeting and lap/tape to air barrier tail. Any services penetrations through air barrier to be suitably sealed.
7. Erect internal walls.
8. Lay floor insulation hard up against wall.
10. First fix services to wall.
11. Fix insulated plasterboard with minimum thermal resistance of 1.52 m²K/W on continuous horizontal dabs (at maximum 600 mm vertical centres) and vertical edge dabs.
12. Inject insulating expanded foam between insulated dry-lining and floor decking.
13. Provide mastic seal to all service penetrations.

Ψ = 0.029 W/mK

1: Thermal Performance
2: Air Barrier

Minimum thermal resistance of this insulation layer to achieve 1.52 m²K/W.
Overlap of insulation to be 300 mm minimum.
Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Enhanced Detail MV03-F03 (B)
Use this detail instead of ACD: MII-GF-03

Site Manager/Supervisor: .. Site Name: .. Plot No: .. Date: / /
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

- Ensure insulation below ceiling is installed tight up against edge of wall/air barrier. [✓]
- Fix plaster stop bead to wall tight up against ceiling insulation. [✓]
- Trim off any additional air barrier below plasterstop bead. [✓]

Alternate check list for foil backed insulation.

- Ensure insulation below ceiling is installed tight up against edge of wall. [✓]
- Tape a 150 mm width of air barrier membrane to ceiling insulation to lap down wall. [✓]
- Fix plaster stop bead to wall tight up against ceiling insulation. [✓]
- Trim off any additional air barrier below plasterstop bead. [✓]

- **T**: Thermal Performance
- **A**: Air Barrier

Plasterstop Bead Detail Par1

This detail to be used in conjunction with MV02 & 03 wall types
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

<table>
<thead>
<tr>
<th>Site check list – floor type F03 (as shown)</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix plasterstop bead to wall ensuring it is hard down onto air barrier lapped over lower floor sheeting.</td>
<td>☐</td>
</tr>
<tr>
<td>Trim off any additional air barrier above plasterstop bead.</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternate site check list – floor types F01 and 02</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix plasterstop bead to wall ensuring it is hard down onto floor perimeter insulation.</td>
<td>☐</td>
</tr>
<tr>
<td>Trim off any additional air barrier above plasterstop bead.</td>
<td>☐</td>
</tr>
</tbody>
</table>

This detail to be used in conjunction with MV02 & 03 wall types

![Diagram of Plasterstop Bead Detail Par2]

Air Barrier

Site Manager/Supervisor: ___________________________ Site Name: ___________________________ Plot No: ___________________________ Date: __/__/___
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Place compressible insulation between last truss/joist and into depth of steel frame gable wall panel.</td>
</tr>
<tr>
<td>2</td>
<td>Fix wall air barrier/vapour control layer to steel studs and temporarily fix to underside of first two trusses/joists.</td>
</tr>
<tr>
<td>3</td>
<td>Fix ceiling air barrier/vapour control layer to underside of trusses/ joists with a taped lap of 300 mm down wall.</td>
</tr>
<tr>
<td>4</td>
<td>Fix plasterboard to walls to achieve required fire resistance.</td>
</tr>
<tr>
<td>5</td>
<td>Fix insulation with minimum thermal resistance of 1.30 m²K/W to underside of ceiling, with edge tight to plasterboard to wall. *</td>
</tr>
<tr>
<td>6</td>
<td>Fix 50 mm wide (depth dependent on services to be provided) battens at maximum 600 mm centres to underside of ceiling, perpendicular to trusses.</td>
</tr>
<tr>
<td>7</td>
<td>Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall (into studs).</td>
</tr>
<tr>
<td>8</td>
<td>Erect internal walls with header plate secured to underside of ceiling battens.</td>
</tr>
<tr>
<td>9</td>
<td>Fix services to wall plasterboard (into studs)/underside of trusses.</td>
</tr>
<tr>
<td>10</td>
<td>Place plasterboards to ceiling/walls and tape joints or provide skim finish.</td>
</tr>
<tr>
<td>11</td>
<td>Place ceiling insulation between/over trusses/joists and ensure that the full depth of insulation over trusses/joists extends to lap with insulation between studs.</td>
</tr>
<tr>
<td>12</td>
<td>N.B. This stage can be completed at any point from * above.</td>
</tr>
<tr>
<td>13</td>
<td>Provide a mastic seal to all service penetrations.</td>
</tr>
</tbody>
</table>

ψ = 0.068 W/mK

1: Thermal Performance
2: Air Barrier

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Minimum lap of window/door frame with insulation of 70 mm, or provide a minimum thermal resistance of this lap of 1.75 m²K/W.

Enhanced Detail SF01 Lintel (A)
Use this detail instead of ACD: SFW-WD-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

When three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, a y-value of 0.04 can be used in SAP2005. See Introductory Document for full details.

Minimum lap of window/door frame with insulation of 70 mm, or provide a minimum thermal resistance of this lap of 1.75 m²K/W.

Enhanced Detail SF01 Lintel (B)
Use this detail instead of ACD: SFW-WD-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

✓ Grout/cement wash surface of block and beam floor to seal joints.
✓ Lay floor damp proof membrane/air barrier over floor and lap up walls by 300 mm and temporally fix to studs. Any services penetrations through air barrier to be suitably sealed.
✓ Fix wall air barrier/vapour control layer to steel studs and lap/tape over floor damp proof membrane/air barrier.
✓ Fit perimeter upstand insulation with a minimum thermal resistance of 3.04 m²K/W hard up against studs up to height of screeded finish.
✓ Lay floor insulation hard up against perimeter insulation.
✓ Screed floor.
✓ Fix plasterboard to walls to achieve required fire resistance.
✓ Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall (into studs).
✓ Fix services to wall plasterboard (into studs).
✓ Place plasterboards to wall and tape joints or provide skim finish.
✓ Fit skirting boards and provide a mastic seal between floor and skirtings, and to all service penetrations.

\[\Psi = 0.074 \text{ W/mK} \]

1. Minimum thermal resistance of the perimeter insulation upstand to achieve 3.04 m²K/W.
2. Overlap of insulation to be 300 mm minimum.
3. Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Enhanced Detail SF01-F01 (A)
Use this detail instead of ACD: SFW-GF-01
Version 1.0

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Place compressible insulation between last truss/ joist and into depth of timber frame gable wall panel, and ensure that gap between studs and truss/ joist is also filled.

2. Fix wall air barrier/ vapour control layer to timber studs and temporarily fix to underside of first two trusses/ joists.

3. Fix ceiling air barrier/ vapour control layer to underside of trusses/ joists with a taped lap of 300 mm down wall.

4. Fix insulation with minimum thermal resistance of 1.30 m²K/W to underside of ceiling, with edge tight to wall. *

5. Fix insulation with minimum thermal resistance of 1.09 m²K/W to studs of wall.

6. Fix 50 mm wide (depth dependent on services to be provided) battens at maximum 600 mm centres to underside of ceiling, perpendicular to trusses.

7. Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall (into studs).

8. Erect internal walls with header plate secured to underside of ceiling battens.

9. Fix services to wall (into studs)/ underside of trusses.

10. Place plasterboards to ceiling/ walls and tape joints or provide skim finish.

11. Place ceiling insulation between/ over trusses/ joists and ensure that the full depth of insulation over trusses/ joists extends to lap with insulation between studs.

N.B. This stage can be completed at any point from * above.

12. Provide a mastic seal to all service penetrations.

\[\Psi = 0.045 \text{ W/mK} \]

1: Thermal Performance

2: Air Barrier

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Enhanced Detail TF01 Gable
Use this detail instead of ACD: TFW-RG-01

CE296 © Energy Saving Trust 2008. E&OE
Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Place rigid/semi rigid insulation into cavity from below up to the underside of the stepped damp proof course/cavity tray. Ensure the insulation will be in contact with window/door frame.
2. Install window/door frame, and provide a mastic seal in gap between frame and timber frame, and place double sided tape over joint.
3. Fix wall air barrier/vapour control layer to timber studs and lap to window/door frame.
4. Fix insulation with minimum thermal resistance of 1.09 m²K/W to studs of wall.
5. Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall.
6. Erect internal walls.
7. Fix services to wall (into studs).
8. Place plasterboards to ceiling/walls and tape joints or provide skim finish.
9. Provide a mastic seal to all service penetrations and to window/door frame internally/externally.

Psi (Ψ) = 0.024 W/mK

1: Thermal Performance

2: Air Barrier

Enhanced Detail TF01 Lintel

Use this detail instead of ACD: TFW-WD-01

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Grout/cement wash surface of block and beam floor to seal joints.
2. Lay floor damp proof membrane/air barrier over floor and lap up walls by 300 mm and temporarily fix to studs. Any services penetrations through air barrier to be suitably sealed.
3. Fix wall air barrier/vapour control layer to timber studs and lap/tape over floor damp proof membrane/air barrier.
4. Fit perimeter upstand insulation (at least 225 mm high) with a minimum thermal resistance of 3.04 m²K/W hard up against studs.
5. Lay floor insulation hard up against perimeter insulation.
6. Fix insulation with minimum thermal resistance of 1.09 m²K/W to studs of wall.
7. Screed floor.
8. Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall (into studs).
9. Fix services to wall (into studs).
10. Place plasterboards to wall and tape joints or provide skim finish.
11. Fit skirting boards and provide a mastic seal between floor and skirtings, and to all service penetrations.

\[\Psi = 0.044 \text{ W/mK} \]

- **T**: Thermal Performance
- **A**: Air Barrier

1. Minimum thermal resistance of this insulation layer to achieve 1.09 m²K/W.
2. Minimum thermal resistance of the perimeter insulation upstand to achieve 3.04 m²K/W.
3. Blockwork of maximum 0.19 W/mK dry thermal conductivity.

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Site Manager/Supervisor: .. Site Name: .. Plot No: .. Date: / /

Enhanced Detail TF01-F01 (A)
Use this detail instead of ACD: TFW-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Grout/cement wash surface of block and beam floor to seal joints.
2. Lay floor damp proof membrane/air barrier over floor and lap up walls by 300 mm and temporarily fix to studs. Any services penetrations through air barrier to be suitably sealed.
3. Fix wall air barrier/vapour control layer to timber studs and lap/tape over floor damp proof membrane/air barrier.
4. Fit perimeter upstand insulation (at least 225 mm high) with a minimum thermal resistance of 3.04 m²K/W hard up against studs.
5. Lay floor insulation hard up against perimeter insulation.
6. Fix insulation with minimum thermal resistance of 1.09 m²K/W to studs of wall.
7. Screed floor.
8. Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall (into studs).
9. Fix services to wall (into studs).
10. Place plasterboards to wall and tape joints or provide skim finish.
11. Fit skirting boards and provide a mastic seal between floor and skirtings, and to all service penetrations.

Ψ’ = 0.025 W/mK

1: Thermal Performance
2: Air Barrier

Enhanced Detail TF01-F01 (B)

Use this detail instead of ACD: TFW-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Provide insulation between floor joists in location of proposed internal stud walls.
2. Fix lower floor sheeting/decking.
3. Lay air barrier over lower floor sheeting and lap up walls by 300 mm and temporarily fix to studs. Any services penetrations through air barrier to be suitably sealed.
4. Fix wall air barrier/vapour control layer to timber studs and lap/tape over floor air barrier.
5. Fix insulation with minimum thermal resistance of 1.09 m²K/W to studs of wall.
6. Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall.
7. Erect internal walls.
8. Fix services to wall (into studs).
9. Lay floor insulation hard up against perimeter insulation.
10. Lay upper floor decking.
11. Place plasterboards to wall and tape joints or provide skim finish.
12. Fit skirting boards and provide a mastic seal between floor and skirtings, and to all service penetrations.

Ψ = 0.026 W/mK

1: Thermal Performance
2: Air Barrier

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Enhanced Detail TF01-F03 (A)
Use this detail instead of ACD: TFW-GF-03
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

- Provide insulation between floor joists in location of proposed internal stud walls.
- Fix lower floor sheeting/decking.
- Lay air barrier over lower floor sheeting and lap up walls by 300 mm and temporarily fix to studs. Any services penetrations through air barrier to be suitably sealed.
- Fix wall air barrier/vapour control layer to timber studs and lap/tape over floor air barrier.
- Fit perimeter upstand insulation (at least 150 mm high) with a minimum thermal resistance of 3.04 m²K/W hard up against studs.
- Fix insulation with minimum thermal resistance of 1.09 m²K/W to studs of wall.
- Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall.
- Erect internal walls.
- Fix services to wall (into studs).
- Lay floor insulation hard up against perimeter insulation.
- Lay upper floor decking.
- Place plasterboards to wall and tape joints or provide skim finish.
- Fit skirting boards and provide a mastic seal between floor and skirtings, and to all service penetrations.

Ψ = 0.026 W/mK

1. Thermal Performance
2. Air Barrier

1. **Minimum thermal resistance of this insulation layer to achieve 1.09 m²K/W.**
2. **Minimum thermal resistance of the perimeter insulation upstand to achieve 3.04 m²K/W.**
3. **Blockwork of maximum 0.19 W/mK dry thermal conductivity.**

Enhanced Detail TF01-F03 (B)
Use this detail instead of ACD: TFW-GF-03
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Enhanced Detail TF02 Gable

Use this detail instead of ACD: TFW-RG-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Place rigid/semi rigid insulation into cavity from below up to the underside of the stepped damp proof course/cavity tray. Ensure the insulation will be in contact with window/door frame.

2. Install window/door frame, and provide a mastic seal in gap between frame and timber frame, and place double sided tape over joint.

3. Fix wall air barrier/vapour control layer to timber wall panel and lap to window/door frame.

4. Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall.

5. Erect internal walls.

6. Fix services to wall.

7. Place plasterboards to walls and tape joints or provide skim finish.

8. Fit weatherboard to underside of outer leaf hard up to frame and seal joint with mastic. Provide a mastic seal to all service penetrations and to window/door frame internally/externally.

Minimum lap of window/door frame with insulation of 70 mm, or provide a minimum thermal resistance of this lap of 1.75 m²K/W.

Enhanced Detail TF02 Lintel (A)

Use this detail instead of ACD: TFW-WD-01

ψ = 0.025 W/mK

1: Thermal Performance
2: Air Barrier
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Minimum lap of window/door frame with insulation of 70 mm, or provide a minimum thermal resistance of this lap of 1.75 m²K/W.

Suggested construction sequence including site check list

1. Place rigid/semi rigid insulation into cavity from below up to the underside of the stepped damp proof course/cavity tray. Ensure the insulation will be in contact with window/door frame.
2. Install window/door frame, and place double sided tape to edge of frame internally.
3. Fix wall air barrier/vapour control layer to timber wall panel and lap to window/door frame.
4. Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall.
5. Erect internal walls.
6. Fix services to wall.
7. Place plasterboards to ceiling/walls and tape joints or provide skim finish.
8. Provide a mastic seal to all service penetrations and to window/door frame internally/externally.

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Enhanced Detail TF02 Lintel (B)

Use this detail instead of ACD: TFW-WD-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

1. Minimum thermal resistance of this insulation layer to achieve 1.75 m²K/W.
2. Minimum thermal resistance of the perimeter insulation upstand to achieve 2.17 m²K/W.
3. Overlap of insulation to be 300 mm minimum.
4. Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Enhanced Detail TF02-F01 (A)
Use this detail instead of ACD: TFW-GF-01
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Enhanced Detail TF02-F01 (B)
Use this detail instead of ACD: TFW-GF-01

Minimum thermal resistance of this insulation layer to achieve 1.75 m²K/W.
Minimum thermal resistance of the perimeter insulation upstand to achieve 2.17 m²K/W.
Overlap of insulation to be 300 mm minimum.
Blockwork of maximum 0.19 W/mK dry thermal conductivity.
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Suggested construction sequence including site check list

1. Provide insulation between floor joists in location of proposed internal stud walls.
2. Fix lower floor sheeting/decking.
3. Lay air barrier over lower floor sheeting and lap up walls by 300 mm and temporarily fix to wall panels. Any services penetrations through air barrier to be suitably sealed.
4. Fix wall air barrier/vapour control layer to timber wall panels and lap/tape over floor air barrier.
5. Fit perimeter upstand insulation (at least 150 mm high) with a minimum thermal resistance of 2.17 m²K/W hard up against wall panels.
6. Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall.
7. Erect internal walls.
8. Fix services to wall panels.
9. Lay floor insulation hard up against perimeter insulation.
10. Lay upper floor decking.
11. Place plasterboards to wall and tape joints or provide skim finish.
12. Fit skirting boards and provide a mastic seal between floor and skirtings, and to all service penetrations.

Ψ = 0.021 W/mK

1: Thermal Performance

2: Air Barrier

This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Enhanced Detail TF02-F03 (A)

Use this detail instead of ACD: TFW-GF-03
This indicative guidance illustrates best practice for design and construction in respect to ensuring thermal performance and air barrier continuity, and must be implemented with due regard to site conditions and all other requirements imposed by Building Regulations.

Only when three complementary Energy Saving Trust Enhanced Details are used together, and in conjunction with all other relevant ACDs, can a y-value of 0.04 be used in SAP2005. See Introductory Document for full details.

Version 1.0

Suggested construction sequence including site check list

1. Provide insulation between floor joists in location of proposed internal stud walls.
2. Fix lower floor sheeting/decking.
3. Lay air barrier over lower floor sheeting and lap up walls by 300 mm and temporarily fix to wall panels. Any services penetrations through air barrier to be suitably sealed.
4. Fix wall air barrier/vapour control layer to timber wall panels and lap/tape over floor air barrier.
5. Fit perimeter upstand insulation (at least 150 mm high) with a minimum thermal resistance of 2.17 m²K/W hard up against wall panels.
6. Fix 50 mm deep (width dependent on services to be provided) horizontal battens at maximum 600 mm vertical centres to wall.
7. Erect internal walls.
8. Fix services to wall panels.
9. Lay floor insulation hard up against perimeter insulation.
10. Lay upper floor decking.
11. Place plasterboards to wall and tape joints or provide skim finish.
12. Fix skirting boards and provide a mastic seal between floor and skirtings, and to all service penetrations.

Minimum thermal resistance of this insulation layer to achieve 1.75 m²K/W.
Minimum thermal resistance of the perimeter insulation upstand to achieve 2.17 m²K/W.
Overlap of insulation to be 300 mm minimum.
Blockwork of maximum 0.19 W/mK dry thermal conductivity.

Ψ = 0.021 W/mK

Enhanced Detail TF02-F03 (B)

Use this detail instead of ACD: TFW-GF-03