Domestic heating sizing method
Domestic heating sizing method

This ‘whole house’ procedure provides the busy heating installer with a boiler sizing method that is fast and easy to use. It can also be used for other heat generators (such as micro-CHP or heat pumps) together with a heating system design method. Its purpose is to give a realistic estimate of the heating demand for a whole dwelling so that the boiler or other heat generator can be sized correctly. Good sizing leads to:

- Lower installed costs.
- Higher heating efficiencies.
- Lower fuel costs.
- Reduced CO₂ emissions to the environment.

The aims of this method

Replacement boilers are rarely sized correctly. Oversized boilers cost more to buy and generally operate less efficiently, leading to higher running costs and increased emissions to the atmosphere. This ‘whole house’ procedure provides the busy heating installer with a quick and easy but reasonably accurate way to size boilers.

This sizing method has been updated and can now deal with the improved levels of thermal insulation commonly used in both new and existing dwellings. Where possible, it follows the calculation principles used to produce Energy Performance Certificates.

It can be used for typical dwellings with gas, oil and LPG boilers. For combi boilers, the minimum size is often determined by hot water performance rather than space heating, but this method can still be used to check that a combi boiler can also meet the heating requirement. This method should not be used for a typical, very large, or unusually shaped dwellings, where more detailed methods should be used.

The method is based on a number of assumptions:

- A design internal temperature of 19.2°C (included in the location factor).
- Design external temperatures that depend on the location of the dwelling (included in the location factor).
- Losses to adjacent dwellings (party heat losses) are based on a room temperature difference of 10.6°C.
- Floor heat losses are based on both floor type and exposed perimeter of the dwelling.
- Window areas are inferred from floor area.
- An allowance of 10% for intermittent heating is included in the location factor.
- An allowance of 5% for distribution losses is included in the location factor.
- An average ventilation rate of 0.76 air changes per hour, with the facility to take account of extra heat losses due to open chimneys.
- An allowance of 2kW (3kW for larger hot water demands) for heating hot water in a separate cylinder.
- A minimum heat output of 8kW for boilers.

Sizing method update:

Where possible, this sizing guide follows the calculation principles used to produce Energy Performance Certificates. To replace the domestic heating sizing method worksheet please download sheets from energysavingtrust.org.uk/housing
Complete sections 1 to 8 by filling in the shaded boxes from actual measurements and red-boxed boxes from the tables. The unshaded boxes should be filled in by calculation. Assess the shape of the dwelling.

For simple rectangular dwelling, use the worksheet alone.

For later use (in section 5), count the number of open fireplaces with a chimney (count 1 for each). In addition, count the number of closed but ventilated chimneys (count \(\frac{1}{3} \) for each), open-fronted gas fires in a fireplace (count \(\frac{1}{3} \) for each), and open-flue appliances (count \(\frac{1}{3} \) for each). Select the type of external wall by date of build, if known; otherwise by construction type (table 3).

First calculate the total floor area. Multiply the total floor area by the window factor for the type of property (taken from table 1) then add the window constant (taken from table 1). This gives an estimate of the window area without the need for extra measurements. If this window area is greater than the maximum window area (calculated in section 2), use the maximum window area instead. Multiply the window area by the window U-value (taken from table 2) to calculate the window heat loss \(\text{\textquotedbl{}A\textquotedbl{}} \).

The wall heat loss \(\text{\textquotedbl{}B\textquotedbl{}} \) is calculated from the total external wall area (section 2) minus the window area, multiplied by the wall U-value taken from table 3.

Multiply the area of the lowest floor (NOT the total floor area) by the roof U-value to calculate the roof heat loss \(\text{\textquotedbl{}C\textquotedbl{}} \). For a mid flat or bottom flat the roof heat loss will be zero.

For other heat generators (eg, micro-CHP, heat pumps) the building fabric and ventilation heat loss \(\text{\textquotedbl{}G\textquotedbl{}} \) can be used to derive a basic design heat loss (with no allowances for intermittent heating or pipe heat loss). This is useful as a starting point for heating system design procedures for other heat generators. To calculate the basic design heat loss, copy \(\text{\textquotedbl{}G\textquotedbl{}} \) and add \(\text{\textquotedbl{}P\textquotedbl{}} \) and \(\text{\textquotedbl{}Q\textquotedbl{}} \) and 400 then divide the total by 1150. Record the result in box \(\text{\textquotedbl{}U\textquotedbl{}} \).

If adjacent properties are heated to the same standard, the heat loss through the shared building elements is usually small and can be ignored. However, there may be prolonged periods during which an adjacent property remains unheated. The party heat loss is calculated here so that it can be taken into account in the heating system design method, if required.

Detached dwellings have no party walls, so the party heat losses are zero. Semi-detached dwellings typically have one party wall, and mid-terraced dwellings normally have two party walls. For a mid flat or bottom flat, there are also party losses through the ceiling. For a top flat or mid flat, there are also party losses through the floor.

To calculate the party heat losses, note the number of boundary walls of each length and width that are NOT external walls. Party wall, ceiling and floor U-values are given in table 2. Add boxes \(\text{\textquotedbl{}H\textquotedbl{}}, \text{\textquotedbl{}I\textquotedbl{}}, \text{\textquotedbl{}J\textquotedbl{}} \) and \(\text{\textquotedbl{}K\textquotedbl{}} \) to give a total then multiply by 10.6 to give the total party heat loss \(\text{\textquotedbl{}L\textquotedbl{}} \) in Watts.

If the heat generator is a regular or system boiler (not a combi), copy the party loss from box \(\text{\textquotedbl{}L\textquotedbl{}} \) in section 7 into box \(\text{\textquotedbl{}L\textquotedbl{}} \) here and select a hot water allowance of 2000W (or 3000W if there is an unusually large hot water demand). If the heat generator is a combi boiler, copy the party loss from box \(\text{\textquotedbl{}L\textquotedbl{}} \) in section 7 into box \(\text{\textquotedbl{}L\textquotedbl{}} \) here and select a hot water allowance of zero in \(\text{\textquotedbl{}M\textquotedbl{}} \).

For any other type of heat generator (eg micro-CHP or heat pump), refer to the relevant heating system design method to see whether party heat loss and hot water allowance should be included and fill boxes \(\text{\textquotedbl{}L\textquotedbl{}} \) and \(\text{\textquotedbl{}M\textquotedbl{}} \) accordingly. In some cases party losses may be omitted if there is a satisfactory auxiliary heating system. If no guidance is available from a relevant heating system design method then proceed as above for a regular boiler.

Copy the larger of box \(\text{\textquotedbl{}L\textquotedbl{}} \) and \(\text{\textquotedbl{}M\textquotedbl{}} \) into box \(\text{\textquotedbl{}N\textquotedbl{}} \). Copy box \(\text{\textquotedbl{}G\textquotedbl{}} \) from Section 6 into box \(\text{\textquotedbl{}O\textquotedbl{}} \) here. Copy the results from any separate worksheets for extensions, additional blocks, room-in-roof or conservatory into boxes \(\text{\textquotedbl{}P\textquotedbl{}} \) and \(\text{\textquotedbl{}Q\textquotedbl{}} \); for other small extensions or loft conversions simply add the radiator output (in Watts) into box \(\text{\textquotedbl{}P\textquotedbl{}} \) or \(\text{\textquotedbl{}Q\textquotedbl{}} \).
1. Describe property and take three measurements (in metres)

 Property type
 Length m
 Width m

 Property location
 Room height (floor to ceiling) m
 Number of floors

 External wall type (table 3)
 Roof type and insulation depth (table 4)
 Floor type and insulation depth (table 6)

 Window type (table 2)
 No. of open chimneys

2. Calculate total external wall area (including windows) and exposed perimeter (see section 3 and section 4)

 Length No. of exterior walls
 Width No. of exterior walls
 Exposed perimeter
 Room height No. of floors
 Total external wall area
 Maximum window area

3. Calculate the heat losses from windows and external walls

 Length Width Area of lowest floor m²
 No. of floors Total floor area m²
 Window factor (table 1) and constant (table 1) m²
 Estimated window area
 Window area
 Window U-value (table 2)
 Wall U-value (table 3)
 Wall heat loss (W/K)
 Roof heat loss (W/K)
 Ventilation heat loss (W/K)

4. Calculate the roof and floor heat losses

 Area of lowest floor
 Roof U-value (table 4)
 Exposed perimeter
 (Use as look-up value in table 6)
 Floor U-value (table 6)
 Wall heat loss (W/K)
 Roof heat loss (W/K)
 Ventilation heat loss (W/K)

5. Calculate the ventilation heat loss

 Total floor area
 Height
 No. of open chimneys
 Chimney air flow rate
 Total flow rate
 Ventilation heat loss (W/K)

8. Sum the external surface and ventilation heat losses (see table 5)

 Total external loss (W)
 Location factor (see table 5)
 Total external loss (W)

9. Calculate any heat loss to adjacent properties (party heat losses), if required (see table 7)

 Length No. of party walls
 Width No. of party walls
 Room height
 No. of floors
 Party wall U-value (table 7)
 Party wall heat loss (W/K)

 Lowest floor area (section 3)
 Party ceiling U-value (table 7)
 Party ceiling heat loss (W/K)

 Lowest floor area (section 3)
 Party floor area (table 7)
 Party floor heat loss (W/K)

 Party losses for extension (W/K)
 Party ceiling losses are calculated for mid flats and bottom flats only. For other properties enter zero
 Party floor losses are calculated for mid flats and top flats only. For other properties enter zero
 K

10. Calculate required heat output (in kW) (see section 7)

 Are party losses included?
 Enter yes or no
 Larger of L or M Fabric and ventilation (W)
 Thermal bridging
 Extension or additional block
 Room-in-roof or conservatory
 Heat required (KW)
 Basic Design Heat Loss (KW)
 Larger of T or B KW

 Fabric and ventilation (W)
 Hot water allowance (2000, 3000, or 0)
 N + G + 400 + P + Q + 400 ÷ 1150 = U
 L + M ÷ 1000 = T
 G + P + Q + 400 ÷ 1150 = U
 V
Table 1: Property type (window factor and constant)

<table>
<thead>
<tr>
<th>Property type</th>
<th>Window factor</th>
<th>Window constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detached</td>
<td>0.127</td>
<td>8.2</td>
</tr>
<tr>
<td>Semi-detached</td>
<td>0.127</td>
<td>8.2</td>
</tr>
<tr>
<td>Mid terrace</td>
<td>0.127</td>
<td>8.2</td>
</tr>
<tr>
<td>Top flat</td>
<td>0.086</td>
<td>5.7</td>
</tr>
<tr>
<td>Mid flat</td>
<td>0.086</td>
<td>5.7</td>
</tr>
<tr>
<td>Bottom flat</td>
<td>0.086</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Table 2: Window U-values

- Double glazed fitted in 2002 or later: 2.0
- Double glazed wood/PVC fitted before 2002: 3.1
- Double glazed metal fitted before 2002: 3.7
- Single glazed wood/pvc: 4.8
- Single glazed metal: 5.7

Table 3: Wall U-values. Select on year built, if known. If not known select on construction type.

- Built 2003 or later: 0.35
- Built 1983 - 2002: 0.45
- Solid wall 220mm: 2.10
- Unfilled cavity wall: 1.60
- Filled cavity wall: 0.60

Table 4: Roof U-values. For a middle flat or bottom floor flat use a U-value of zero. Otherwise choose insulation thickness from below.

- Pitched, none: 2.30
- Pitched, 50mm (2’'): 1.50
- Pitched, 100mm (4’'): 0.40
- Pitched, 150mm (6’'): 0.29
- Pitched, 200mm (8’’) or more: 0.20
- Flat roof built 1983 or later: 0.35
- Flat roof, 25mm (1’’) or more: 0.70
- Flat roof, none: 2.30

Table 5: Location factor

- North England and the English Midlands: 30.0
- Northern Ireland: 26.9
- Scotland: 29.4
- South East England and Wales: 27.5
- South West England: 25.0

Table 6: Floor U-values. For a top flat or mid flat use a U-value of zero. Otherwise calculate floor area ÷ external perimeter and lookup the U-value by floor type and insulation thickness.

<table>
<thead>
<tr>
<th>Floor type and insulation thickness</th>
<th>Suspended, 25mm (1’’) or less</th>
<th>Suspended or solid, more than 255mm (1’‘)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area - exposed perimeter (m)</td>
<td>W/m²/K</td>
<td>W/m²/K</td>
</tr>
<tr>
<td>1 or less</td>
<td>1.41</td>
<td>1.67</td>
</tr>
<tr>
<td>Over 1 and up to 1.5</td>
<td>1.08</td>
<td>1.69</td>
</tr>
<tr>
<td>Over 1.5 and up to 2</td>
<td>0.98</td>
<td>1.52</td>
</tr>
<tr>
<td>Over 2 and up to 2.5</td>
<td>0.88</td>
<td>1.38</td>
</tr>
<tr>
<td>Over 2.5 and up to 3</td>
<td>0.84</td>
<td>1.27</td>
</tr>
<tr>
<td>Over 3 and up to 4</td>
<td>0.73</td>
<td>1.09</td>
</tr>
<tr>
<td>Over 4 and up to 5</td>
<td>0.66</td>
<td>0.96</td>
</tr>
<tr>
<td>Over 5 and up to 10</td>
<td>0.64</td>
<td>0.82</td>
</tr>
<tr>
<td>Over 10 and up to 20</td>
<td>0.27</td>
<td>0.38</td>
</tr>
<tr>
<td>Over 20</td>
<td>0.16</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table 7: Additional U-values for party loss

- Party wall (brick 215mm): 1.33
- Party ceiling: 1.02
- Party floor: 1.02

Assess the dwelling shape

A. Simple rectangular dwelling
 Use worksheet alone

B. Extension and loft conversions
 Use worksheet and add on radiators sizes in section 8

C. Non-rectangular dwelling
 Divide into sections and repeat calculations.
Further information
The Energy Saving Trust provides technical guidance and solutions to help UK housing professionals design, build and refurbish to high levels of energy efficiency in domestic newbuild and renovation. They are made available through the provision of training seminars, downloadable guides, online tools and a dedicated helpline.

For more information visit energysavingtrust.org.uk/housing

Further reading
A complete list of Energy Saving Trust housing professionals guidance can be found in 'Energy Efficiency is best practice' (CE279). To download this, and to browse all available Energy Saving Trust publications, visit energysavingtrust.org.uk/housing/publications

The following publications may also be of interest:
- Domestic heating by oil boiler systems (CE29)
- Domestic heating by gas boiler systems (CE30)
- Central heating system specifications (CHeSS) (CE31)

We have a new online boiler sizing tool called Domestic heating sizing wizard. See energysavingtrust.org.uk/housing for more information.

Energy Saving Trust
21 Dartmouth Street, London SW1H 9BP
Tel 0845 120 7799
bestpractice@est.org.uk energysavingtrust.org.uk/housing

Printed on Revive 75 Silk which contains 75% recycled fibre.